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ABSTRACT
Large language models (LLMs) are capable of assessing document

and query characteristics, including relevance, and are now be-

ing used for a variety of different classification labeling tasks as

well. This study explores how to use LLMs to classify an infor-
mation need, often represented as a user query. In particular, our

goal is to classify the cognitive complexity of the search task for

a given “backstory”. Using 180 TREC topics and backstories, we

show that GPT-based LLMs agree with human experts as much

as other human experts. We also show that batching and order-

ing can significantly impact the accuracy of GPT-3.5, but rarely

alter the quality of GPT-4 predictions. This study provides insights

into the efficacy of large language models for annotation tasks nor-

mally completed by humans, and offers recommendations for other

similar applications.
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models; • Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION
Knowing the cognitive complexity of a particular information need

allows a search engine to answer queries differently based on the

user’s needs. For example, when a user searches for information
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on a complex topic, such as understanding how Google works, the
ideal Search Engine Result Page (SERP) would provide a concise

overview along with relevant resource links. Conversely, when a

query represents a straightforward topic such as how did Julius
Caesar die?, an effective SERP could just answer the question di-

rectly. In both cases, the capability of a search engine to determine

query complexity improves the user search experience.

Large Language Models (LLMs), exemplified by OpenAI’s GPT

models, demonstrate remarkable proficiency across many differ-

ent Natural Language Processing (NLP) tasks such as text genera-

tion, summarization, and classification. However, to the best of our

knowledge, they have not been explored for classifying cognitive

complexity. This study asks: can an LLM determine the cognitive
complexity of an information need?

By adopting a comparative approach, our research evaluates the

agreement between expert human annotators and LLMs for the

cognitive complexity categorization task. Our initial findings sug-

gest that LLMs can achieve a proficiency level that is comparable

to expert human annotators for this task. This exploration not only

shows the potential of using LLMs for intricate annotation tasks

within Information Retrieval (IR) and psychology, but also demon-

strates a cost-efficient solution for a task that normally requires

human experts, and is an important step towards democratizing ML

research. By alleviating financial and logistical burdens associated

with labor-intensive annotation processes, LLMs enable us to do

more with less – allowing more inclusive and collaborative research

endeavors to be undertaken. In subsequent sections we describe

our methodology, datasets, results, implications, and potential limi-

tations – offering a comprehensive perspective on using LLMs to

determine the cognitive complexity of a task in IR.

2 RELATEDWORK
2.1 Annotating Information Needs
The impact of search task complexity on information-seeking be-

havior and search engine usage is well-documented [11]. This ex-

tends to the complexity of the required information, the diversity of

consulted sources, and the number of steps required in the search

process [8, 24]. Several models have been proposed to categorize

these tasks. Initially, Byström and Järvelin [7] introduced a five-level

taxonomy, ranging from automatable tasks to a genuine decision-

making task. This taxonomy was later refined by Bell and Ruthven

[6] to a three-level model, primarily based on the ability of humans

to distinguish between the levels and the clarity of the tasks. Wu
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et al. [26] studied task complexity for interactive information re-

trieval systems, and introduced a hierarchy based on a revision of

Bloom’s taxonomy of learning objectives [15]. Their study showed

that tasks with higher cognitive complexity lead to longer search

sessions, an increased number of queries submitted, and a higher

number of search result clicks.

Based on these previous taxonomies, Bailey et al. [3] propose a

task complexity taxonomy tailored for offline information-seeking

tasks test collections. The key idea is that information-seeking tasks

exhibit a diversity of different characteristics, and task complexity

significantly influences search behavior. In their study, Bailey et al.

adopted a three-level hierarchy, based on the cognitive complex-

ity hierarchy originally introduced by Wu et al.. The three levels

encompass a spectrum of information needs: “Remember” tasks
involve retrieving facts which answer simple questions (e.g., “How

did Eva Peron die?”), “Understand” tasks require interpreting, sum-

marizing, and explaining information, while “Analyze” tasks require
information to be broken down, gaining a deeper understanding of

each part, and finally creating a comprehensive overview.

Bailey et al. categorized a set of TREC topics using these complex-

ity types by creating backstories that clearly describe the informa-

tion need represented in each topic. All four authors annotated the

topics independently, leading to an overall inter-annotator agree-

ment of 0.664, using Fleiss’ 𝜅. Notably, the agreement varied for

different complexity levels, ranging from 0.456 for Analyze tasks to
0.907 for Remember tasks. This suggests that Remember tasks tend
to be relatively easy to identify and agree upon. In cases where no

majority rating could be determined among the four annotators,

a thorough discussion was conducted in order to reach a consen-

sus, resulting in a single confirmed task complexity label for each

topic which can be used as a ground truth in future experiments.

This comprehensive classification process is the foundation of the

experiments and subsequent analyses in this work.

2.2 Human vs. Machine Annotation
There has been significant interest in using LLMs for tasks that

traditionally required human labeling [10, 17, 30]. Arguably, al-

paca [25] is the seminal work for instruction-based prompting in

LLMs. The key idea is to define a prefix prompt for a chat session,

where the initial prompt is a clear set of instructions describing

how an LLM should respond. This approach is now widely used to

solve a variety of information retrieval tasks [2, 12, 23] and, more

widely, ML-based tasks [14]. In fact, one of the results that is now

routinely being reported is that LLMs outperform crowdsourced

human labeling for a number of tasks [13]. Recently Microsoft de-

scribed using OpenAI’s GPT models for relevance assessment in

the Bing search engine [22]. The paper describes a study that com-

pares human experts with LLMs for the relevance assessment task.

The authors conclude that LLMs are able to achieve comparable

performance to human experts.

These studies challenge our current beliefs about the quality of

human relevance labeling and our ongoing dependence on it [4].

They also highlight the potential of using LLMs for annotation tasks,

and emphasise their affordability and scalability in annotation.

2.3 Categorizing Search Task Complexity
Previous research on categorizing the complexity of search tasks

provides a foundation for our study. The refined taxonomy proposed

by Bailey et al. [3] provides a practical set of labels for information-

seeking tasks. Their approach to categorizing tasks and measuring

inter-annotator agreement provides the foundation for a compre-

hensive comparison between our approach and human experts.

Research using LLMs for tasks traditionally requiring human label-

ing highlights the value of using LLMs in this domain. We build

on this by exploring the use of LLMs for the cognitive complexity

classification labeling task in IR.

3 DATA AND EXPERIMENTAL SETUP
We employ two pre-trained LLMs for annotation: GPT-3.5-turbo and

GPT-4, accessible through the OpenAI API. These models operated

with their default hyper-parameters, and the version used was 0613.

Our dataset consists of 180 annotated topics obtained from Bailey

et al. [3]. The topics originate from several TREC collections: the

Question Answering Track 2002 (70 topics, 1824-1893), the Robust

Track 2003 (60 topics, 303-610), and the Terabyte Track 2004 (50

topics, 701-750). Note that the dataset was enhanced by the authors

with a set of new backstories – brief information need statements to

accompany each topic. These backstories were designed to clarify

the context and motivation of the search requests, making the topic

statements easier to understand. The annotation process included

all 180 topics, with categorization performed by the four authors,

whom we consider human experts as they also created each of the

backstories.

Topics are assigned to one of three categories based on the back-

story: “Remember” (R), “Understand” (U), or “Analyze” (A). In order

to evaluate LLM performance, we compare the categorizations with

the original ones provided by human expert annotators. To simplify

the initial comparison, we focus on the 107 topics where there was

unanimous agreement by the human experts, which we will refer

to as “full agreement” (FA).1 The FA set is instrumental in assessing

LLM performance using several different models and configura-

tions. Subsequently, to compare LLM performance with human

experts, we also consider the entire set of 180 topics, referred to

as “all topics” (AT). The distribution of categories for each set is

shown in Table 1. To measure quality, we compute Krippendorf’s 𝛼

using an ordinal scale [16]. This metric is well-suited to evaluating

agreement between multiple annotators and categories, even in

cases where data is missing. We adopt an ordinal scale as it aligns

with the assumption of an inherent order among the categories, as

is often applied in Bloom’s Taxonomy, which the labeling scheme

is derived from. In this order, “Remember” represents the least com-

plex, followed by “Understand,” and “Analyze” denoting the most

complex category. Consequently, we assign values of 1, 2, and 3

to the categories, respectively, so that for example a higher level

of disagreement is signified between “Remember” and “Analyze”,

versus a disagreement between “Remember” and “Understand”.

The distribution of topic lengths for the FA set is shown in Fig-

ure 1, where topic lengths are measured by the number of terms

contained in the backstory. To examine the potential separability to

1
Originally, there were 112 topics that had a full agreement; however, five of these

were marked with a question mark and were excluded from the FA set.
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Table 1: The distribution of categories for each set. Columns
represent the categories assigned by the annotators to a cer-
tain topic.

{R} {U} {A} {A, U} {R, U} {A, R, U} Total

AT set 65 35 12 53 11 4 180

FA set 65 33 9 0 0 0 107
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Figure 1: The distribution of the topic lengths for each cat-
egory in the FA set, which contains 107 topics, where topic
length is the number of terms contained in the backstory.
The black line represents the median and the white dashed
line represents the mean.
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(a) Using topic length as the sole
feature for classification.
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(b) Using GPT-4 with batching
for classification.

Figure 2: Confusion matrices for the FA set.

categories by topic length, we employed SVC [19] to fit and classify

the entire FA set (both train and evaluate). Topic length, measured

in terms, was the sole feature used for classification. The resulting

confusion matrix for the FA set is depicted in Figure 2a. While there

are noticeable differences in topic lengths depending on the cate-

gory, length alone does not appear to be a reliable predictor of the

category label.

4 RESULTS
Large Language Models (LLMs) are stochastic by design, and so is

the model output. To gain a better understanding of the models’

behavior, we conduct experiments where the temperature hyper-

parameter is set to zero, which results in “mostly deterministic”

outputs for the same input prompt.
2
We then explore different

LLM configurations. More specifically, we examine the following

factors:
3

(1) The Instruction Prompt: We assess the impact of different

instruction prompts on LLM categorization.

(2) Batch Topic Order: We investigate how the order of topics

in a batch can influence responses from the LLM.

(3) Zero-Shot vs. One-Shot: We compare the performance of

LLMs when categorizing topics in a zero-shot manner (with-

out examples) and a one-shot manner (using a single exam-

ple).

4.1 Batching
Considering that annotation costs depend on the number of input

and output tokens when using the OpenAI API, we devise a cost-

efficient method to minimize the cost. Our approach involves using

the OpenAI “system” role to provide an instruction prompt once

for each batch of topics.
4
We then maximize the batch size to utilize

the tokens available per API call most effectively. It is worth noting

that while the OpenAI API supports straightforward batching of

topics, other LLM APIs may not offer this feature and may require

a specific implementation or fine-tuning.

Tokenization schemes vary for each LLM model. For example,

GPT-3.5-turbo allows a maximum of 4,000 tokens per query, and

costs 0.0015 USD per 1,000 input tokens and 0.002 USD per 1,000

output tokens.
5
Our calculations factor in an estimated 40 tokens

per topic for each classification response. The mean costs and time

to annotate 107 topics are shown in Table 2. Implementing this

approach led to a 74.6% cost reduction for GPT-3.5-turbo and a 69%

reduction for GPT-4 when compared against non-batched annota-

tion. Additionally, annotation time is reduced by 46.3% and 48.1%

for GPT-3.5-turbo and GPT-4, respectively. It is also noteworthy

that the costs and time associated with each task, even when us-

ing the most expensive model, GPT-4, are significantly lower than

traditional crowdsourcing methods. To provide context, a rough

estimate of using MTurk to annotate the same topics would cost

approximately 15 USD for a single worker,
6
assuming an average of

roughly one minute per topic, including reading initial instructions.

4.2 Instruction Prompts
Instruction prompts – brief text added to the beginning of a prompt,

before the topic text – can have an impact on LLM outputs [22,

28, 29]. Instruction prompts play a pivotal role in guiding an LLM

to generate the desired responses, making them a critical compo-

nent in the annotation process. We examined several properties of

instruction prompting:

(i) Prompt 1: A comprehensive verbal prompt that describes

the role, task, and context of the categories. It instructs the

2
As per information from the OpenAI Developer Forum.

3
The code, prompts, and model responses are available at:

https://github.com/Zendelo/LLMs-Complexity-Annot.

4
https://platform.openai.com/docs/guides/gpt.

5
Source: https://openai.com/pricing, as of October 31, 2023.

6
Based on the minimum federal wage of 7.25 USD in the US.

https://github.com/Zendelo/LLMs-Complexity-Annot
https://platform.openai.com/docs/guides/gpt
https://openai.com/pricing
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Table 2: Annotation costs and time for each LLMmodel using
the FA set.

Model Batched Single Difference

Cost (USD)

GPT-3.5 0.03 0.13 0.10

GPT-4 0.44 1.41 0.97

Time (Minutes)

GPT-3.5 1.32 2.46 1.14

GPT-4 6.93 13.36 6.43

Table 3: Krippendorf’s 𝛼 for each model and prompt. The
values for batched are the mean values for runs using six
randomized orderings for the topics. The best result for each
row is underlined.

Prompt

Model 1 2 3 4 5 6

GPT-3.5

Batched 0.63 0.86 0.79 0.87 0.72 0.85

Single 0.87 0.82 0.84 0.86 0.84 0.87

GPT-4

Batched 0.97 0.92 0.93 0.96 0.96 0.95

Single 0.91 0.87 0.81 0.90 0.92 0.91

model to provide a brief explanation in addition to catego-

rization (226 terms).

(ii) Prompt 2: A concise prompt with instructions similar to

Prompt 1 (91 Terms).

(iii) Prompt 3: Identical to Prompt 2, but with a request for an

explanation before categorization (91 terms).

(iv) Prompt 4: Similar to Prompt 1, with an additional request

for the model to count the number of categorized topics and

ensure all are categorized (248 terms).

(v) Prompt 5: Similar to Prompt 4, including an input and out-

put example for each category (315 terms).

(vi) Prompt 6: Same as Prompt 5 but without the explanation

request (244 terms).

The results of the annotation using these different prompts are

summarized in Table 3. Several noteworthy findings can be ob-

served: batching appears to enhance the results for GPT-4 but

decreases agreement slightly when using GPT-3.5-turbo. Also of

interest, if an example for each category is added to the prompt

(Prompts 5 & 6), there is no observable improvement in agreement.

Asking the model to provide a detailed explanation before the cat-

egorization (Prompts 2 vs. 3) also shows minimal impact, with

slightly reduced agreement. Removing the explanation altogether

and simply requesting labels (Prompts 5 vs. 6) appears to have no

effect on agreement, but offers cost and time advantages. While it

could be argued that omitting a reason for each label makes the

output less explainable, it is unclear if the class selected and the

reason provided are correlated. This is an interesting question that

deserves further exploration. For example, the explanation may

simply be information that the model “believes” the user wants to

see, rather than the reason the model chose the label it provided.

Batched Single

0.5

0.6

0.7

0.8

0.9

1.0

α

GPT-3.5 GPT-4

Figure 3: Krippendorff’s 𝛼 for each model when comparing
annotation of a single topic vs. a batch of topics. The different
values represent six different prompts and six different or-
derings for the topics. The black line represents the median
and the white dashed line represents the mean.

On investigation, the reasons that were provided in several of the

model configurations appear to be informative, but the legitimacy

of label justification in LLMs is an interesting area that warrants

further study.

4.3 Batch Topic Order
The order in which input tokens are presented to an LLM can affect

the output that is produced. We therefore investigate how topic

order in batching affects LLM responses. Formally, we hypothesize

that topic order should not significantly influence LLM responses.

To test our hypothesis, we conduct experiments using the FA set, and
vary the order of topics within each batch. We tested six different

orderings, comprised of four random permutations of topics, as

well as sorted ascending and descending based on the topic ID. The

results, summarized in Figure 3, show that GPT-3.5-turbo is more

sensitive to topic order, indicating that the particular prompt that

is used (recall that topic order is part of the prompt) should be

constructed carefully. In contrast, GPT-4 is remarkably stable for

the different orderings, showing little impact on the final results

produced.

Overall, from Table 3 we observe that the agreement with hu-

man annotators is remarkably high. Specifically, GPT-4 achieves

an agreement in the range of 0.92 to 0.97 for the FA set when us-

ing batch processing of topics. In contrast, GPT-3.5-turbo has an

agreement in the range of 0.63 to 0.87 for the same task. Although

GPT-3.5-turbo exhibits slightly lower agreement and much higher

variance than GPT-4, it still demonstrates the potential utility of

LLMs in a variety of practical applications. A key concern with

GPT-3.5-turbo is its sensitivity to the input prompt. This sensitivity

may potentially be mitigated by running the model multiple times

using a set of different prompts and then aggregating the results,

but this is a prospect we leave for future research.

4.4 GPT-4 as a Human Expert
Next, we compare the performance of GPT-4 with human experts.

Building on the insights gained in the previous experiments, we
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Table 4: Leave-one-out Krippendorff’s 𝛼 using an ordinal
scale for the classes.

A.1 A.2 A.3 A.4 GPT-4
𝛼 0.84 0.84 0.84 0.83 0.83

Table 5: Krippendorff’s 𝛼 between every pair of annotators
using an ordinal scale for the classes. The cell color is based
on the 𝛼 value before rounding.

A.1 A.2 A.3 A.4 GPT-4
A.1 — 0.82 0.84 0.83 0.83

A.2 0.82 — 0.82 0.84 0.84

A.3 0.84 0.82 — 0.84 0.81

A.4 0.83 0.84 0.84 — 0.89

GPT-4 0.83 0.84 0.81 0.89 —

formulate a hypothesis that GPT-4 performance will be very similar

to human experts. To test this hypothesis, we conduct experiments

using the AT set, which contains all 180 annotated topics. The agree-

ment between the four human annotators (labeled A.1 to A.4) for

this data is 𝛼 = 0.83. We then use the GPT-4 model to create a

further set of annotations of the topics in the AT set using Prompt 1,

and batch the topics. Themodel’s results on the FA set are illustrated
in Figure 2b, with a Krippendorff’s 𝛼 of 0.98 for the FA set.

7

To evaluate performance, we regard the model as an additional

(fifth) annotator and calculate the agreement between all the annota-

tors. Our approach uses leave-one-out cross-validation to compute

the agreement between annotators by excluding one annotator at

a time, and repeating this process for every annotator. The results

are summarized in Table 4.

The results in Table 4 show that using a GPT-4 model result

instead of one from a human annotator increases the overall agree-

ment in three out of four of the comparisons. The agreement is

only worse when annotator 4 (A.4) is omitted.

To investigate agreement in more detail, we also compute the

pairwise agreement between the GPT-4 model and the human anno-

tators, shown in Table 5. The results closely parallel the agreement

observed between the human annotators in the original experiment.

Notably, the agreement between the GPT-4 model and annotator 4

(A.4) is the highest among all of the annotator pairs. This finding

supports the comparability of GPT-4 to human annotation, and sug-

gests it could be valuable to use it as an additional annotator when

performing human annotation. In summary, our results indicate

that the GPT-4 model can match the quality of human annotators

for this classification task, and reinforce our belief that these models

are a valuable addition to an annotation pool.

5 DISCUSSION
LLMs are becoming popular across a wide range of fields, including

IR, education, medicine, law, finance, and psychology [9]. Their

potential to enhance human annotation processes is quite clear

7
It is worth noting that the disagreements in the FA set are only between “Understand”

and “Analyze”.

based on our findings, andmerits further exploration. In this section,

we discuss the implications of our findings, highlight potential

challenges, and suggest future research directions.

5.1 Cost Comparison
The cost and time efficiency of employing LLMs is a significant ad-

vantage, especially when comparing it to traditional crowdsourcing

methods [22]. The affordability of existing pre-trained LLMs for

cognitive complexity classification in IR underscores their potential

in making the dataset construction process more accessible. Our

study demonstrates that not only is the cost significantly lower,

but the quality of the output is also comparable to expert human

annotators, which have been shown to be more reliable than crowd-

sourced annotations a number of times in previous work [20, 21],

but is expensive (consider the cost of using four highly paid IR

researchers for 1-2 hours each with the cost of gathering a set of

annotations using Mechanical Turk for example). The quality is

surprisingly high, and the cost of using the OpenAI API is minimal.

5.2 Caveats and Future Research
While this study demonstrates the value of LLMs for cognitive com-

plexity classification tasks, there are still a number of limitations

and potential challenges that must be resolved before an LLM can

be reliably used for other important tasks. Future research direc-

tions should focus on refining LLM-based annotation processes and

addressing these existing issues.

Despite the cost-effectiveness of LLMs, several counterpoints

should be considered. The output quality may not always match

human-generated results. Humans can better understand context

and nuances that LLMs may not currently be capable of, and there-

fore topic experts should always be involved in the process of

evaluating and refining the output of LLMs. Furthermore, it is well-

known that the cost of training LLMs can be substantial, both in

monetary terms as well as in negative impacts on the environ-

ment [5, 31]. LLMs also require regular updates and maintenance

in order to capture new information, which adds to their overall

costs. Finally, the models are stochastic so there is no guarantee that

they will produce the same results every time they are used, which

makes the results difficult to reproduce and potentially less reliable.

One way to mitigate this issue is to run the models multiple times

and aggregate the results, but this increases the costs further, and

for the annotation process, it is unclear how much this approach

would improve the quality of the final result. We leave this as a

topic for future research.

LLMs are often seen as “black boxes” since their decision-making

process is not transparent or easily interpretable by humans. Many

of the models, such as the OpenAI models used in this study, are

proprietary and not open source, and so the data used to train them

are not publicly available. This lack of transparency can be prob-

lematic as the models may be biased; it is not currently clear how

to identify and correct such biases, especially when the underlying

data used in the models is not known. This issue is particularly

concerning when LLMs are used in applications where the conse-

quences of incorrect decisions could be severe and could potentially

harm people (healthcare or insurance approval, for example). There-

fore, LLMs should be used cautiously, and their output should be
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carefully scrutinized by human experts before being used to make

important decisions.

One important consideration is that in our study, information

needs are represented by concise backstories that provide a contex-

tual framework for the annotators and the LLMs. While beneficial

for cognitive complexity classification and tasks involving user

information needs [1, 18, 27], such backstories are not always avail-

able. In many real-world IR scenarios, queries are not accompanied

by enough information to clearly define the underlying informa-

tion need. Therefore, the LLMs would need to infer this additional

information using only the query, a well-known challenge in the

IR community, and a topic that warrants additional study in the

future.

The integration of LLMs in the field of IR for tasks such as cog-

nitive complexity classification could potentially be a disruptive

technology in the crowdsourcing industry. This disruption could

have both positive and negative consequences, representing a sig-

nificant transformation in the way research and information clas-

sification tasks are completed by researchers. The full extent and

impact of this transformation warrants further study as it is still un-

clear what percentage of labeling tasks being performed by human

crowdsourcing can be reliably automated using LLMs.

6 CONCLUSION
This study explored the use of LLMs for the task of classifying the

cognitive complexity of search scenarios, demonstrating key advan-

tages and disadvantages of automating the task using a LLMs. We

presented a cost and time-effective annotation process which inte-

grates LLM annotation with human annotation, and demonstrated

the cost and time savings that can be achieved without compromis-

ing the quality of the annotations produced. The potential benefits

and challenges arising from our study require additional exploration

in the evolving landscape of LLM-driven IR.
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