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Abstract. Query Performance Prediction (QPP) has been studied
extensively in the IR community over the last two decades. A by-product
of this research is a methodology to evaluate the effectiveness of QPP
techniques. In this paper, we re-examine the existing evaluation method-
ology commonly used for QPP, and propose a new approach. Our key
idea is to model QPP performance as a distribution instead of relying
on point estimates. Our work demonstrates important statistical impli-
cations, and overcomes key limitations imposed by the currently used
correlation-based point-estimate evaluation approaches. We also explore
the potential benefits of using multiple query formulations and ANal-
ysis Of VAriance (ANOVA) modeling in order to measure interactions
between multiple factors. The resulting statistical analysis combined with
a novel evaluation framework demonstrates the merits of modeling QPP
performance as distributions, and enables detailed statistical ANOVA
models for comparative analyses to be created.

1 Introduction

The Information Retrieval (IR) community has long recognized the importance
of applying statistical tests to evaluation results. Although best practices con-
tinue to evolve, conference/journal guidelines and discussion papers [20,34] have
led the community to appreciate the importance of a more theoretically grounded
evaluation, and practitioners in IR have been urged over the years to include
sound analyses using statistical tests of significance or confidence intervals in
submitted manuscripts. While this has led to higher quality analytical com-
parisons in many IR-related fields, not all areas have adopted the practice. An
example of a common IR problem that might benefit from alternative evaluation
techniques is Query Performance Prediction (QPP).

The goal of QPP is to estimate the effectiveness of a retrieval system in
response to a query when no relevance judgments are available [8]. The most
widely-used method for evaluating QPP approaches is based on the strength of a
relationship between per-topic prediction scores, and the actual per-topic system
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effectiveness as measured using a standard IR effectiveness metric, usually Aver-
age Precision (AP). The association is measured using a correlation coefficient,
with different papers reporting the Pearson (linear) correlation, Spearman’s rank
correlation, or Kendall’s τ . A QPP approach that achieves a higher correlation
value than another is taken to be the superior approach. This evaluation method
compares QPP effectiveness at a very high level, with the performance of a QPP
approach over a whole set of topics being summarized just by a correlation coef-
ficient as a point value.

In order to statistically validate the results two alternatives are available.
First, we can test whether or not the correlation between a predictor and the
retrieval results is significantly different from zero [9,11,12,14,16,23,24,27,37,
48–50]. However, this validation approach just tells us how reliable the con-
clusions are for a single QPP method, and does not allow two or more QPP
approaches to be directly compared. Second, by relying on repeated randomized
topic sampling, we can test whether or not the correlation coefficients for two
different QPP methods are significantly different from each other. A statistically
appropriate method to test the latter would rely on Fisher’s z transformation of
sample correlation coefficients. In fact, this approach was previously suggested
by Hauff et al. [22] and again more recently by Roitman [32] to more reliably test
significant differences in QPP model performance. However, this practice has not
been adopted in published QPP work to date. Instead, a Student’s t-test for the
difference of means of the correlated correlation coefficients is currently the pre-
ferred approach [30,46,47]. However, it is important to note that both of these
approaches are fundamentally different from the pair-wise significance test used
for system retrieval effectiveness, which is now common practice in IR evaluation
exercises.

Motivated by these observations, we re-examine how QPP efficacy can be
analyzed using a more fine-grained approach – by modeling the performance of
QPP techniques as distributions. This approach has also previously been applied
successfully in system evaluation exercises. A distribution-based model can be
constructed as follows. First, an estimate of the performance for each system-
topic combination is computed using a traditional performance measure, such
as AP. Then, all of the topics for a collection are used to model the performance
distribution. Note that this is fundamentally different from a classical QPP eval-
uation approach. Indeed, even when various sampling techniques (e.g., random-
ization/bootstrap) are currently used in QPP, this is a re-sampling of topics, and
leads to a new (aggregated) point estimate, e.g., Kendall’s τ , for that sample.
The different re-samples are then used to compute an expectation and a confi-
dence interval for the point estimate. In contrast, when randomization/bootstrap
techniques are used for the evaluation of retrieval effectiveness [40], it is topics
that are re-sampled; for each topic a performance score such as AP is computed,
and a distribution of performance for that sample is obtained. An aggregate of
this distribution, e.g., a mean or a confidence interval, is then computed, and
finally, the different re-samples are used to compute a further expectation and
confidence interval for the aggregate.
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In this work, we propose a methodology similar to the latter approach. Our
evaluation approach has several appealing properties: it allows formal inferential
statistics to be applied, which generalizes the results to the entire population of
topics; it allows the behavior of a QPP approach to be more clearly isolated,
for example through confidence intervals; and, it enables factor decomposition,
which in turn allows us to measure the relative contributions to observed effec-
tiveness systematically. We also incorporate recent work in retrieval effectiveness
on query variation and reformulation of each topic [3,4,7,43,47] into our frame-
work, which allows a more fine-grained sampling of retrieval performance, and
to estimate interaction between systems, topics and query formulations, which
is not possible using only a single point estimate.

Our work focuses on two closely related research questions:

– RQ1: How can detailed statistical analysis and testing be applied to QPP
evaluation exercises?

– RQ2: What factors contribute to improving or reducing the performance of
a QPP model?

The overall contribution of this paper is a new evaluation framework for QPP
which models the performance of QPP methods as distributions of topics. Beside
providing a statistically grounded evaluation procedure, our approach provides
practitioners with new tools to carry out comprehensive analyses of QPP models.

2 Related Work

Retrieval performance can vary widely across different systems, even for a single
query [8]. This has resulted in a large body of work on QPP, which is divided
into two common approaches. Pre-retrieval predictors analyze query and corpus
statistics prior to retrieval [12,23,24,27,36,48] and post-retrieval predictors that
also analyze the retrieval results [1,2,9,14,16,31,38,46,49]. Predictors are typi-
cally evaluated by measuring the correlation coefficient between the AP values
attained with relevance judgments and the values assigned by the predictor. Such
evaluation methodologies are based on a point estimate and have been shown to
be unreliable when comparing multiple systems, corpora and predictors [22,35].
Hauff et al. [22] demonstrate that higher correlation does not necessarily attest
to better prediction, and used Root Mean Square Error (RMSE) in their eval-
uation. Hauff et al. applied methods from Meng et al. [26] to compare 2 or
more correlation coefficients, and argued that to test the significance of differ-
ences in correlation between the predictors, Fisher’s z transformation should be
used and the Confidence Interval (CI) should be reported. When computing the
CI for Pearson’s linear correlation in the evaluation using multiple previously
reported pre-retrieval predictors, they found that many of the predictors had
overlapping CIs, and concluded that they were not significantly different from
the best performing predictor. Hauff et al. focused on prediction of normalized
scores that can be compared to AP using linear correlation as measured with
a parametric statistic. In this work, we focus on ranking the queries based on
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the retrieval effectiveness, which is analogous to a rank-based correlation given
by Kendall’s τ as our reference for the existing evaluation framework, but many
other alternatives are possible. We chose to use a rank-based correlation as it
is a non-parametric statistical method, and hence makes no assumptions about
the underlying distributions of the data.

Also of interest, recent work using query variations for QPP [43,47] has
demonstrated that the relative prediction quality of predictors can vary with
respect to the effectiveness of the queries used to represent the topics, and
we explore such observation further using advanced statistical instrumentation.
One principled approach that can be used in IR evaluation is ANOVA [25,33].
ANOVA is commonly used to assess the presence of statistically significant
differences in mean performance observed when using different experimental
conditions. This technique can be operationalized as a General Linear Mixed
Model (GLMM), where a response variable, called Data, is linearly mod-
eled into two parts: the experimental conditions (the Model) and the Error:
Data = Model + Error. The Error represents that part of the variance in the
Data that the Model cannot account for. The ANOVA approach is particularly
useful in our work as it allows us to break down the variance observed in the
data, assigning it to the factors that caused it [5,10,17,19,29,41,45]. The Model
often includes a subject component (which in IR evaluation often corresponds to
the topic), one or more factors, which are the different experimental conditions
(either the entire system, or its components - e.g., the stemmer, the stoplist and
the QPP model), and possibly their interactions. If all the possible combinations
of factors are applied to all subjects, this is a Factorial/Crossed Design, and its
factors are called Crossed Factors. Specific factors might be nested inside others:
in the following analyses, query formulations are a nested factor of the topic,
since each formulation represents a single topic and cannot be used to represent
others. To compare the effect size of different factors, which cannot be done by
looking only at the F-statistic or p-value, the Strength of Association (SOA) is
reported, measured as ω2, and is the factor significance, bounded between [0,
1]. The larger ω2 is, the greater the impact is for factor levels to the response
variable.

3 Experimental Analysis

3.1 Experimental Setup

In our analyses, we use the TREC Robust 2004 (Robust04) Ad Hoc [44] collec-
tion. The Robust04 ad hoc track consists of approximately 528K documents
from TREC disks 4 & 5, minus the Congressional Record from the TIPSTER
corpus, and contains 249 topics with at least one relevant document in the QREL
file. We enrich the set of queries for the corpus using publicly available human-
curated query variants for each topic [6].1 Our experiments use a Grid of Points
(GoP) of runs as described by Ferro and Harman [18], using 4 different stoplists

1 http://culpepper.io/publications/robust-uqv.txt.gz.

http://culpepper.io/publications/robust-uqv.txt.gz


An Enhanced Evaluation Framework for Query Performance Prediction 119

Table 1. A summary of QPP models used in this work.

QPP model Description

Pre-retrieval

SCQ [48] Measures similarity based on cf.idf to the corpus, summed over the

query terms

AvgSCQ [48] SCQ normalized by the query length

MaxSCQ [48] The query term with maximal SCQ score

SumVAR [48] Measures the cf.idf variability of the query terms in the corpus

AvgVAR [48] Variability normalized with the query length

MaxVAR [48] The query term with maximal variability

AvgIDF [13] The mean idf value of the query terms

MaxIDF [36] The query term with maximal idf value

Post-retrieval

Clarity [12] Measures the divergence between the Language Model (LM) con-

structed over top documents in the result list to the LM of the entire

corpus

NQC [39] Measures the standard deviation of the top documents scores in the

retrieval list

WIG [50] Measures the difference between the mean retrieval score of the top

retrieved documents and the score of the entire corpus

SMV [42] Scores the queries based on a combination of the scores standard

deviation and magnitude

UEF [37] Prediction framework that is based on the similarity of the initial

result list with the list re-ranked using a Relevance Model (RM),

scaled by an estimator of the RM quality. In this work we scale

the RM with the existing post-retrieval predictors: UEF(Clarity),

UEF(NQC), UEF(WIG) and UEF(SMV)

(atire, zettair, indri, lingpipe), plus the no stop approach and 2 different
stemmers, (lovins, porter) plus a nostem approach. All the runs were pro-
duced using the query-likelihood model [28], and repeated 15 times. We test 16
QPP models (12 + 4 UEF-based methods) for our analyses, which are summa-
rized in Table 1. Our goal was to choose representative and well known system
configurations and QPP models, and the evaluation framework is not limited
to any specific configuration. So it can easily be extended by others for fur-
ther experiments in the future. In total, 240 different predictor-system combina-
tions were generated for the Robust04 collection. The pre-retrieval approaches
are parameter-free and do not require tuning. For the parameters of the post-
retrieval predictors we used fixed settings that have been demonstrated to be
effective for the Robust04 collection previously [37,39,42]. We apply Average
Precision (AP) to measure the effectiveness of the different retrieval pipelines,
as our primary goal is to be consistent with previous evaluation exercises, as
Average Precision (AP) was the most common effectiveness metric used in prior
QPP work.
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Fig. 1. Prediction quality of the selected QPP models on Robust04 (Confidence Inter-
vals computed with Kendall’s τ), using either title queries or all available formulations.
(Color figure online)

3.2 Traditional QPP Evaluation Using Correlations

Prior work on QPP has relied primarily on a single evaluation paradigm. Given
a set of topics (information needs), where each topic is represented by a single
query, a single retrieval method, and a single document corpus, the prediction
quality of the predictors is evaluated as follows:

1. Retrieval effectiveness of the queries is measured with a common IR metric,
usually AP or possibly Normalized Discounted Cumulated Gain (nDCG) to
induce a ranking of the queries. This ordering serves as the ground truth in
the evaluation process.

2. The QPP method is applied to the queries, which generates a candidate list
where the queries are ranked by their prediction values.

3. A correlation coefficient is computed between the ground truth list and the
candidate list produced by the predictor.

4. The correlation coefficients of different predictors are then compared, with an
underlying assumption that a higher correlation value attests to the superior
quality of a predictor.

The correlation coefficient is often measured as Pearson’s r for linear correlation,
Kendall’s τ , and/or Spearman’s ρ for the monotonic rank correlation.

Figure 1 shows the performance of 16 different QPP models when using this
common evaluation approach – Kendall’s τ correlation in this case – with 95%
confidence intervals shown as well. In this example, the results are generated for
a specific retrieval pipeline, using the indri stoplist and porter stemmer. To
compute the confidence intervals (at significance level α = 0.05), we used a bias-
corrected and accelerated bootstrap procedure with 10,000 samples. Observe
that when using title queries only (orange bars), there is a large degree of over-
lap between the different QPP approaches. Similar results were observed when
using all of the other pipelines described in this work. The pairwise comparison
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Fig. 2. Comparison between the AP score distributions of title-only queries and multi-
query topic formulations. (Color figure online)

using the data from Fig. 1 (title queries only, p-values omitted due to space
constraints), shows that 57 pairs of predictors are found to be statistically sig-
nificantly different, out of 120 total pairs of QPP models (47.5%). In particular,
among the best performing predictors, UEF(Clarity) is not statistically differ-
ent from UEF(WIG), UEF(NQC), UEF(SMV), Clarity and NQC. This suggests
that using confidence intervals does indeed make it difficult to decide which QPP
system is the best performing one, as suggested by Hauff et al. [22].

In addition to using the traditional title queries, we also explore the sce-
nario of using multiple formulations, which allows us to produce replicas for the
same experimental conditions (i.e., the retrieval system or the QPP model used)
on the same subject (i.e., the topic). While the performance is generally lower
when using multiple topic formulations (the blue bars shown in Fig. 1), there is
a high degree of similarity between the ordering of the QPP models for multi-
ple query formulations to the ordering for title-only (Kendall’s tau correlation
between using title-only versus multiple queries per topic is 0.98, p < 0.0001).
Overall, the statistically induced bootstrap intervals are substantially larger if
a traditional title-only evaluation approach is used, which makes it less suit-
able for determining if any single system is a clear winner, while using multiple
queries does induce smaller intervals and better discriminative power between
the QPP approaches. Even if, as shown, using query variants does not dramati-
cally impact the ranking of QPP models, it is nevertheless important to consider
whether adding variants has an impact on the distribution of the raw AP scores.
The Mean Average Precision (MAP) values are 0.211 and 0.254 for the set of
all query formulations and title queries only, respectively, and thus are quite
consistent. Figure 2 shows the Probability Density Function (PDF) for the AP
scores for the two scenarios – title-only (red line) and multiple queries per topic
(blue line). The Kullback-Leibler Divergence (KLD), a measure of the similarity
between the two distributions, is 0.039. In summary, the distributions are similar
and thus the introduction of the multiple formulations for each topic does not
appear to skew the overall AP score distribution.
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3.3 ANOVA Modeling and Analysis of QPP

To support a more detailed analysis of QPP methods and associated factors, we
now explore the use of ANOVA, which can be achieved by modifying steps 3 and
4 of the traditional QPP evaluation process shown above. Instead of computing
the correlations between the complete lists, we measure the difference, for each
query, in the rank position assigned by a QPP method and the ground truth
rank position assigned by AP. Ties in ranks are broken using the average of
tie rank spans, as is the default in many statistical applications [21]. Other tie
breaking rules were also considered but initial investigation led to consistent
final results, so are not reported here. Observe that this transitions us from
point estimates of a single correlation value for the two lists over a whole set
of topics to a distribution of the rank differences between the two lists for each
query in the set. In order to scale the scores to the range [0, 1] we divide them by
the number of samples. The error, labeled as AP induced scaled Absolute Rank
Error (sAREAP ), for each query is:

sAREAP (qi) :=
|rpi − rei |

|Q| , (1)

where rpi and rei are the ranks assigned by the predictor and the evaluation metric
respectively for query i; Q is the set of queries. If we still require the single point
estimate of the prediction quality for each predictor P, we can calculate the AP
induced scaled Mean Absolute Rank Error (sMAREAP ) as follows:

sMAREAP (P) :=
1

|Q|
∑

qi∈Q

sAREAP (qi). (2)

Note that sMAREAP can be seen as a derivation of Spearman’s Footrule dis-
tance, making it a metric for the full rankings instead of a correlation. Among
the properties of Spearman’s Footrule distance, Diaconis and Graham [15] list
that it is bounded between [0, �0.5n2�], where n is the length of the ranking.
Since both sAREAP and sMAREAP are normalized by the number of queries,
sMAREAP is bounded between [0, 0.5]. To demonstrate the agreement between
the proposed evaluation method with existing evaluation practices from a high-
level (point estimate) perspective, we use the QPP methods over the Robust04
title queries. Figure 3 plots the ranking of the predictors based on the median
of the point estimates for each predictor for all 15 system configurations which
is simply the median of the Kendall’s τ correlation for the traditional evalua-
tion approach and the median of sMAREAP for our evaluation approach. Each
predictor consists of 15 values that represent the prediction quality. Though the
directionality of the two approaches is inverted, the ranking of the predictors
clearly agrees on the overall rank ordering. The corresponding box-plots also
demonstrate the similarity of the variance estimate. In order to validate the
agreement we computed the Pearson’s correlation coefficient over the point esti-
mates for the predictors for each of the 15 system configurations. The resulting
correlations coefficients were all −0.99 or higher (p < 0.0001 for each).
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Fig. 3. Prediction quality when measuring correlation with Kendall’s τ and sMAREAP

for Robust04 title-only queries and 15 different system configurations. The line inside
the interquartile range (IQR) is the median, and the white square is the mean.

Table 2. MD0micro ANOVA on the Robust04 collection. Topics are represented with
the title queries. SS: Sum of Squares; DF: Degrees of Freedom; MS: Mean Square; F:
F statistics.

Source SS DF MS F p-value ω̂2
〈fact〉

Topic 876.524 248 3.534 168.136 <0.001 0.410

Stoplist 1.185 4 0.296 14.095 <0.001 0.001

Stemmer 5.218 2 2.609 124.108 <0.001 0.004

QPP model 46.569 15 3.105 147.691 <0.001 0.036

Error 1250.538 59490 0.021

Total 2180.034 59759

We are in a position to introduce our first ANOVA model which will enable
a more comprehensive experimental analysis of the results.

yiqrs = μ + τi + γq + δr + ζs + εiqrs (MD0micro)

where: yi... is the performance (sAREAP ) on the i-th topic (using the specified
QPP pipeline); μ is the grand mean; τi is the effect of the i-th topic (represented
with the title query formulation); γq, δr, and ζs are the effect of the q-th stoplist,
the r-th stemmer, and the s-th QPP model; εiqrs is the error component. Table 2
summarizes the ANOVA results of our first experiment. It can be seen that
the stoplist, the stemmer, and the QPP model have a small size effect, while
the topic effect is large (indicating that most of the performance of the QPP
depends on the chosen topic). Based on the results of this analysis, we also ran
a Tukey’s Honestly Significant Difference (HSD) post-hoc analysis to test for
pairwise differences. Figure 4 shows the Tukey’s HSD confidence intervals for
sMAREAP over the different QPP models.

When comparing Fig. 1 (orange bars) and Fig. 4, we can observe that there
is less overlap between the CIs, in particular, we observe that, by computing the
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Fig. 4. Confidence Intervals of sMAREAP from MD0micro on the Robust04 title
queries.

p-values for the pairwise comparisons, out of 120 pairs of predictors, 96 of them
are significantly different (80.0%). Thus, compared to the results observed for
the bootstrap-based approach, we are able to differentiate between 68.4% more
pairs of predictors. In this case, the top performing cluster includes UEF(WIG),
UEF(SMV), UEF(NQC), and UEF(Clarity).

The “Topic” factor, as Table 2 suggests, is responsible for the largest part of
the variance; this is in line with results from IR effectiveness evaluation (see for
example Tague-Sutcliffe and Blustein [41]). Thus, the estimation of the perfor-
mance for a specific QPP model can vary significantly as it is dependent on prop-
erties of the underlying collection (performance differences in topics/queries).
By removing the contribution of the topics from the global variance, ANOVA
removes any volatility in the underlying experimental data allowing the relative
performance of predictors to be compared more precisely. When using only cor-
relations aggregated across all topics, such information is lost, while an ANOVA
analysis facilitates more discriminative performance comparisons between sys-
tems by systematically accounting for each factor separately.

3.4 ANOVA Modeling of Multiple Queries and Interactions

One of the most interesting aspects of our framework is the capability to compute
the effect sizes of interactions between factors. This is achieved using MD1micro

yijqrs = μ + τi + νj(i) + γq + δr + ζs + (τγ)iq + (τδ)ir + (τζ)is
+ (νγ)j(i)q + (νδ)j(i)r + (νζ)j(i)s + (γδ)qr + (γζ)qs + (δζ)rs + εijqrs

(MD1micro)

which extends MD0micro to include νj(i) to represent the effect of the j-th query
formulation for the i-th topic. Moreover, this model considers all of the possible
two-way interactions which are now computable using the replicates provided by
the multi-query topic formulations.
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Table 3. MD1micro ANOVA applied on Robust04 collection. ω2 for non-significant
factors is ill-defined and thus not reported.

Source SS DF MS F p-value ω̂2
〈fact〉

Topic 1840.082 248 7.420 1293.936 <0.001 0.518

Formulation (Topic) 1746.213 996 1.753 305.749 <0.001 0.504

Stoplist 1.179 4 0.295 51.402 <0.001 0.001

Stemmer 10.622 2 5.311 926.188 <0.001 0.006

QPP model 305.796 15 20.386 3555.233 <0.001 0.151

Topic*Stoplist 40.224 992 0.041 7.071 <0.001 0.020

Topic*Stemmer 154.200 496 0.311 54.216 <0.001 0.081

Topic*QPP model 2051.688 3720 0.552 96.182 <0.001 0.542

Frm.*Stoplist 87.110 3984 0.022 3.813 <0.001 0.036

Frm.*Stemmer 312.955 1992 0.157 27.398 <0.001 0.150

Frm.*QPP model 3348.894 14940 0.224 39.091 <0.001 0.656

Stoplist*Stemmer 0.059 8 0.007 1.288 0.2444 –

Stoplist*QPP model 0.901 60 0.015 2.618 <0.001 <0.001

Stemmer*QPP model 4.850 30 0.162 28.195 <0.001 0.003

Error 1555.757 271312 0.006

Total 11460.530 298799

Table 3 presents the ANOVA summary statistics for Ex. MD1micro. In this
analysis we add the query formulations as a nested factor for each topic, in this
case we randomly chose 5 for each topic.2 The table empirically shows that the
largest differences in QPP performance are due to the topics, and their formu-
lations. While this is a well-known phenomenon, our model is able to explicitly
quantify the magnitude of this effect. The effect for the QPP factor is medium-
sized. It is important to note that the dimension of the effect is due to the wide
variety of QPP models (and their performance) taken into account. For example,
a practitioner wishing to evaluate new QPP models may observe a smaller ω2

for the QPP model factor if the relative performance differences between the
models being compared is less substantial.

We have also ran similar experiments using alternative models with fewer
factors, but found that including all of the possible interactions is the most
informative. For example, the effect size of stoplists and stemmers are both
small but still significant. This suggests that stemmers and stoplists may affect
overall prediction quality, and practitioners should consider all possible factors
when comparing and contrasting QPP performance for a corpus.

We are now in a position to observe the interaction between topics (and their
query formulations) and the predictors, which is large, indicating that important
differences between QPP model performance exists within reformulations of a

2 The topic with the minimal number of query formulations had 5 formulations.
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single topic. Finding the QPP model where interactions are smallest is valuable in
practice as this corresponds to be choosing a model that is most robust to query
reformulation. Additionally, this enables a series of additional analyses, such as a
failure analysis for topics with the largest interaction with a QPP model. There
are many additional factors that could influence the performance of various QPP
approaches, beyond the ones included in our model. For example, alternative
ranking functions or evaluation metrics can also be used with sMARE, and
may provide additional experimental evidence and insights into performance
differences between various QPP models in the future.

4 Conclusion

We have presented a novel evaluation framework for QPP. The framework esti-
mates the performance of QPP on every topic as the distance between its pre-
dicted rank - computed using the QPP – and the expected one – measured
through AP (or any other traditional IR measure). This allows us to obtain a dis-
tribution of performance for the QPP over the different topics. Furthermore, our
framework makes use of multiple query formulations for each topic to enhance
the power of our analyses. Together, the use of multiple query formulations and
the distributional representation of the performance enables carrying out more
accurate studies. In particular, we showed that it is possible to rely on the sta-
tistical properties of ANOVA and corresponding post hoc procedures to better
identify pairs of QPP approaches that are statistically significantly different.
The newly proposed framework also enables the analysis of interaction effects
for QPP models and topics, allowing failure analyses and a deeper understanding
into how a QPP model works. Our framework can be extended and adapted to
different investigation needs. For example, in an academic setting, you may add
further factors to the model such as tokenizers, query expansion components,
or ranking functions to deepen the investigation into the factors that influence
QPP performance. In industrial deployment settings, comparisons between com-
peting QPP techniques may require an ANOVA model consisting of only two
factors: topics and QPP approaches. This simple two-way ANOVA is sufficient
to determine if QPP models are significantly different, and has the added benefit
of relying on a statistically-sound and easy to deploy framework. In future work,
we plan to study additional components of the evaluation framework, such as
the impact of the ranking methods which are used to establish “ground truth”
performance; new factors that influence QPP systems such as the ranking app-
roach used in the post-retrieval QPP; and the effects of using multiple corpora,
in order to more comprehensively model and understand corpus and QPP inter-
actions. In order to aid reproducibility of our results, the code for our proposed
evaluation framework is publicly available.3

3 https://github.com/Zendelo/QPP-EnhancedEval.

https://github.com/Zendelo/QPP-EnhancedEval
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